Evaluation of Geologic CO₂ Sequestration Potential of the Morrow B Sandstone in the Farnsworth, Texas Hydrocarbon Field using Reactive Transport Modeling

Riaz Khan¹, Martin Appold¹, Brian McPherson², Robert Balch³, Mark White⁴

¹Department of Geological Sciences, University of Missouri--Columbia ²Department of Civil and Environmental Engineering, University of Utah ³Petroleum Recovery Research Center, New Mexico Institute of Mining and Technology ⁴Pacific Northwest National Laboratory

Research Objectives

Simulate the movement of injected CO₂ in the Morrow B reservoir and the reaction of CO₂ with Morrow B formation water and mineral matrix

Numerical Grid

Results

Aqueous CO₂ concentrations (mol/kg H₂O) after (i) 10 years and (ii) 100 years of simulation

Simulated temporal changes in volume fraction of carbonate minerals up to 30 years near well 8-4

- ,600 total cells 61
- 38,290 active cells
- Cell colors represent 35 discrete rock types cat-egorized by porosity and permeability obtained from Petrel geological model

Porosity (%)	0	>0-0.1	>0.1 -	>0.125 -	>0.150	>0.20
Permeability (m ²)			0.125	0.15	- 0.2	
1 × 10 ⁻¹⁷	rock1					
> 1 × 10 ⁻¹⁷ - 2.46 × 10 ⁻¹⁴		rock2	rock3	rock4	rock5	rock6
> 2.46 × 10 ⁻¹⁴ - 4.93 × 10 ⁻¹⁴		rock7	rock8	rock9	rock10	rock11
> 4.93 × 10 ⁻¹⁴ -7.4 × 10 ⁻¹⁴		rock12	rock13	rock14	rock15	rock16
>7.4 × 10 ⁻¹⁴ - 9.87 × 10 ⁻¹⁴		rock17	rock18	rock19	rock20	rock21
>9.87 × 10 ⁻¹⁴ - 1.23 × 10 ⁻¹³		rock22	rock23	rock24	rock25	rock26
>1.23 × 10 ⁻¹³ - 1.48 × 10 ⁻¹³		rock27	rock28	rock29	rock30	rock31
>1.48 × 10 ⁻¹³ - 1.72 × 10 ⁻¹³		rock32	rock33	rock34	roo	ck35

Model Set-Up Highlights

Immiscible CO₂ fractions after (i) 10 years and (ii) 100 years of simulation

Simulated temporal variation of pH up to 30 years near well 8-4

Simulated temporal changes in volume fraction of non-carbonate native reservoir minerals up to 30 years near well 8-4

Positive values indicate net precipitation

Conclusions

Aqueous CO₂ is advected from the injection wells to the western boundary of the Farnsworth Unit by about 100 years

- Initial pressure distribution from reservoir history matching of Ampomah et al. (2016), ~32 MPa average
- Uniform initial temperature of 75° C
- Prescribed pressure and temperature boundary conditions along top and bottom grid boundaries
- Prescribed CO₂ injection in 9 wells in western Farnsworth Unit for time = 0 to 10 years
- Initial formation water and mineralogic composition from Ahmmed et al. (2016), Munson (1989), and Gallagher (2014)

Basis Species	Conc. (mol/L)	Mineral	Volume
AIO_2^-	3.7 x 10 ⁻⁸	Albite	9.0
Ba ²⁺	1.4 x 10 ⁻⁷	Ankerite	0.25
Ca ²⁺	8.9 x 10 ⁻⁴	Calite	0.75
Cl	0.051	Clinochlore	1.8
Fe ²⁺	2.3 x 10 ⁻¹²	Illite	0.88
HCO_3^-	0.0011	Kaolinite	2.72
K ⁺	1.8 x 10 ⁻⁴	Quartz	84.3
Mg ²⁺	3.7 x 10 ⁻⁵	Siderite	0.25
Na ⁺	0.059	Smectite	0.1
SiO _{2(aq)}	2.3 x 10 ⁻¹²		
$SO^{2-''}$	$1 / x 10^{-4}$		

 \overline{O}

Negative values indicate net dissolution

- Only minor changes in mineral abundance are predicted on decadal time scales
- Among the native reservoir minerals:

Albite, clinochlore, illite, and ankerite are predicted to dissolve

Quartz, kaolinite, and smectite are predicted to precipitate

- Net precipitation of carbonate minerals is predicted
- More CO₂ is sequestered by aqueous solution than by mineral trapping

Acknowledgments

Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the Southwest Parrnership on CO₂ Sequestration under Award No. DE-FC26-05NT42591

References

Ahmmed, B., Appold, M. S., Fan, T., McPherson, B. J. O. L., Grigg, R. B., White, M. D., 2016, Chemical effects of carbon dioxide sequestration in the Upper Morrow Sandstone in the Farnsworth, Texas hydrocarbon unit: Environmental Geosciences,

pH = 7

1E+09

